
Increasing the Accessibility of Programming to People
who are Blind

Amelia Wang
University of Washington

Human Centered Design and Engineering
Seattle, Washington 98105

aw1998@uw.edu

INTRODUCTION
In modern software development, IDEs (Integrated
Development Environments) play a critical role in
efficient workflow but rely heavily on visual cues.
Programming, with the correct logic and support
should be an accessible skill, but even accessible
environments within IDEs fail to give visually impaired
users an understanding of their code to the same level
as their sighted counterparts. Workarounds and
compatibility issues with their screen readers are often
inconvenient and overwhelming, forcing many to
default to simpler editors.

NVDA (Non-Visual Desktop Access) is an
open-source screen reader offered for free, making it a
popular choice for not only programming, but everyday
use.

Blind programmers are at a crossroads in which the
IDEs being used by their colleagues are not well
accessible and their discomfort with bringing up their
disability status. Many have taken these issues into
their own hands and write custom scripts as a
workaround to their barriers, but those who have
succeeded only represent a small and experienced
number of programmers. Barriers still exist for the
majority of blind programmers and there is still a need
for technology that supports them.

APPROACH
My approach is to review literature that surrounds the
issue of accessibility in programming and work on a
plugin that works with NVDA as an add-on rather than
a separate tool for optimal accessibility and use.
Through this add-on, I hope to provide a more
streamlined experience and better access to information
like that IDEs should typically communicate,
including:

● Debugging
It is important to locate bugs, understand their place

order to fix errors in software. Due to the visual
emphasis IDEs place on this typical process, a system
will be developed to express wrong outputs, syntax
errors, and runtime errors in real time.

● Line and Column Numbers
Understanding not only the location of lines of code,
but in the context of the rest of the structure is
important for development, especially for higher level
projects and work.

● Style
Code style is very much a visually focused detail
important in keeping things clean and understandable
by users.

Literature Review
Attempts to understand and resolve issues for blind
programmers has increased over the years. These
include design solutions like developing different code
structures [2], using tactile aid [3], as well as
conducting interviews of blind users already in the
field. [1]. Together, these identify accessibility issues
in programming and provide insight to integrating
solutions.

1. Design: StructJumper
Baker et al. [2] developed a tool which allows screen
reader users to move through their code quickly,
communicating hierarchical information through
sound. This eclipse add-on helps present tree-based
information, which is important to understand context
and structure of their code, without losing their place in
the editor.

 2. Design: Blocks4All
Milne [3] created a prototype to teach programming
concepts to blind students using touchscreen laptops to
test in schools. Their evaluation of block-based
environments gave context to current issues in design

mailto:aw1998@uw.edu

within the rest of the code, and edit existing work in
and revealed fived accessibility barriers in
programming.

 3. SODBeans
SODBeans is a design intervention by Stefik et al. [4]
that identifies the difficulty of debugging and the visual
emphasis it has. They approach this by creating their
own auditory based programming environment with a
code compiler that sonifies programming errors.

 4. Interviews
Albusays et al. [1] surveys blind developers who use
and work around IDEs despite their complexity and
inaccessibility. This exploratory study provided insight
into the challenges and workarounds in the industry, as
well as user preferences and pain points to improve on
for future work.

Studies and tools around are becoming increasingly
innovative, and they reveal the need for more solutions
that can be worked into the industry.

METHOD
With under 10 weeks to complete a project without
prior experience in accessibility, my timeline will
include learning material as well as building the
add-on.

1. Get to know NVDA + IDEs to decide what
to work with - 7/20

2. Start Development- 7/27
3. Presentable Draft - 8/27
4. Expert Evaluation - 8/31
5. Final write up/documentation - 9/7

EVALUATION
This plugin will be evaluated by an expert in the field,
Catie Baker, to provide high level feedback and will be
made available to the public through Github at
https://github.com/wangamelia/nvdaproj

REFERENCES

1. K. Albusays, S. Ludi, M. Huenerfauth, “Interviews
and Observation of Blind Software Developers at
Work to Understand Code Navigation Challenges,”
in Proc. of the 19th International ACM
SIGACCESS Conference on Computers and
Accessibility, ASSETS 2017, October 20 -
November 1 2017, Baltimore, Maryland, USA

2. Catherine M. Baker, Lauren R. Milne, and Richard
E. Ladner. 2015. StructJumper: A Tool to Help
Blind Programmers Navigate and Understand the
Structure of Code. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI '15). ACM, New York,
NY, USA, 3043-3052. DOI:
https://doi.org/10.1145/2702123.2702589

3. Lauren R. Milne. 2017. Blocks4All: making block
programming languages accessible for blind
children. SIGACCESS Access. Comput. 117
(February 2017), 26-29. DOI:
https://doi.org/10.1145/3051519.3051525

4. A. Stefik, A. Haywood, S. Mansoor, B. Dunda and

D. Garcia, "SODBeans," 2009 IEEE 17th
International Conference on Program
Comprehension, Vancouver, BC, 2009, pp.
293-294. doi: 10.1109/ICPC.2009.5090064

https://doi.org/10.1145/3051519.3051525

